Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38625466

RESUMO

Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.

2.
Sci Total Environ ; 926: 171944, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527542

RESUMO

Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.


Assuntos
Antibacterianos , Ecossistema , Humanos , Antibacterianos/análise , Fluoroquinolonas/análise , Ecotoxicologia , Solo/química
3.
Environ Res ; 250: 118543, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38417661

RESUMO

While global attention has been primarily focused on the occurrence and persistence of microplastics (MP) in urban lakes, relatively little attention has been paid to the problem of MP pollution in rural recreational lakes. This pioneering study aims to shed light on MP size, composition, abundance, spatial distribution, and contributing factors in a rural recreational lake, 'Nikli Lake' in Kishoreganj, Bangladesh. Using density separation, MPs were extracted from 30 water and 30 sediment samples taken from ten different locations in the lake. Subsequent characterization was carried out using a combination of techniques, including a stereomicroscope, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed a significant prevalence of MPs in all samples, with an average amount of 109.667 ± 10.892 pieces/kg3 (dw) in the sediment and 98.167 ± 12.849 pieces/m3 in the water. Small MPs (<0.5 mm), fragments and transparent colored particles formed the majority, accounting for 80.2%, 64.5% and 55.3% in water and 78.9%, 66.4% and 64.3% in sediment, respectively. In line with global trends, polypropylene (PP) (53%) and polyethylene (PE) (43%) emerged as the predominant polymers within the MPs. MP contents in water and sediment showed positive correlations with outflow, while they correlated negatively with inflow and lake depth (p > 0.05). Local activities such as the discharge of domestic sewage, fishing waste and agricultural runoff significantly influence the distribution of polypropylene. Assessment of pollution factor, pollution risk index and pollution load index values at the sampling sites confirmed the presence of MPs, with values above 1. This study is a baseline database that provides a comprehensive understanding of MP pollution in the freshwater ecosystem of Bangladesh, particularly in a rural recreational lake. A crucial next step is to explore ecotoxicological mechanisms, legislative measures and future research challenges triggered by MP pollution.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38372926

RESUMO

The problem of desertification (DSF) is one of the most severe environmental disasters which influence the overall condition of the environment. In Rio de Janeiro Earth Summit on Environment and Development (1922), DSF is defined as arid, semi-arid, and dry sub-humid induced LD and that is adopted at the UNEP's Nairobi ad hoc meeting in 1977. It has been seen that there is no variability in the trend of long-term rainfall, but the change has been found in the variability of temperature (avg. temp. 0-5 °C). There is no proof that the air pollution brought on by CO2 and other warming gases is the cause of this rise, which seems to be partially caused by urbanization. The two types of driving factors in DSF-CC (climate change) along with anthropogenic influences-must be compared in order to work and take action to stop DSF from spreading. The proportional contributions of human activity and CC to DSF have been extensively evaluated in this work from "qualitative, semi-quantitative, and quantitative" perspectives. In this study, we have tried to connect the drives of desertification to desertification-induced migration due to loss of biodiversity and agriculture failure. The authors discovered that several of the issues from the earlier studies persisted. The policy-makers should follow the proper SLM (soil and land management) through using the land. The afforestation with social forestry and consciousness among the people can reduce the spreading of the desertification (Badapalli et al. 2023). The green wall is also playing an important role to reduce the desertification. For instance, it was clear that assessments were subjective; they could not be readily replicated, and they always relied on administrative areas rather than being taken and displayed in a continuous space. This research is trying to fulfill the mentioned research gap with the help of the existing literatures related to this field.

5.
Sci Rep ; 14(1): 4153, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378817

RESUMO

In recent years groundwater contamination through nitrate contamination has increased rapidly in the managementof water research. In our study, fourteen nitrate conditioning factors were used, and multi-collinearity analysis is done. Among all variables, pH is crucial and ranked one, with a value of 0.77, which controls the nitrate concentration in the coastal aquifer in South 24 Parganas. The second important factor is Cl-, the value of which is 0.71. Other factors like-As, F-, EC and Mg2+ ranked third, fourth and fifth position, and their value are 0.69, 0.69, 0.67 and 0.55, respectively. Due to contaminated water, people of this district are suffering from several diseases like kidney damage (around 60%), liver (about 40%), low pressure due to salinity, fever, and headache. The applied method is for other regions to determine the nitrate concentration predictions and for the justifiable alterationof some management strategies.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Nitratos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Índia , Água/análise
6.
Environ Sci Pollut Res Int ; 31(8): 11832-11841, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224436

RESUMO

Thrace is a part of the Marmara Region northwest of Türkiye. This region hosts several lentic ecosystems used for irrigation and drinking water supply. The present study was conducted to analyze the temporal distributions of water quality parameters (WQPs) of lentic ecosystems (lacustrine habitats), including lakes (L1-L2), reservoirs (R1-R12), and ponds (P1-P19) of the Thrace Region. Thirty-three lacustrine habitats were identified in the region. Freshwaters were collected in the wet (end of winter) and dry (end of summer) seasons of 2021-2022 and tested for 12 WQPs. Data was evaluated for the water quality index (WQI) and nutrient pollution index (NPI) and their overall quality level. For the evaluation of non-carcinogenic health risk indices of WQPs, the chronic daily index (CDI), hazard quotient (HQ), and hazard index (HI) were applied. Cluster analysis (CA), Pearson correlation index (PCI), and principal component analysis (PCA) were used to classify the lacustrine habitats and identify the source of WQPs. The average values were as follows: 9.28 mg/L for dissolved oxygen (DO), 94.6% for oxygen (O2) saturation, 9.29 for pH, 613 µS/cm for electrical conductivity (EC), 3.96 NTU for turbidity, 358 mg/L for total dissolved solids (TDS), 3.17 mg/L for nitrate (NO3), 0.05 mg/L for nitrite (NO2), 1.01 mg/L for phosphate (PO4), 78.5 mg/L for sulfate (SO4), and 102 mg/L for chloride (Cl). Results showed a significant increase in WQPs, including NO3, NO2, and PO4, in the wet season, while the salinity decreased from the dry to wet season. Results revealed that HI values of water contaminants in lacustrine habitats were noted to be less than one. Based on determined WQPs, the present study recommends using lacustrine water habitats for irrigation, drinking, and other domestic and industrial purposes.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Ecossistema , Dióxido de Nitrogênio/análise , Turquia , Lagos , Poluentes Químicos da Água/análise , Água Subterrânea/análise
7.
Chemosphere ; 351: 141217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246495

RESUMO

Groundwater is an essential resource in the Sundarban regions of India and Bangladesh, but its quality is deteriorating due to anthropogenic impacts. However, the integrated factors affecting groundwater chemistry, source distribution, and health risk are poorly understood along the Indo-Bangla coastal border. The goal of this study is to assess groundwater chemistry, associated driving factors, source contributions, and potential non-carcinogenic health risks (PN-CHR) using unsupervised machine learning models such as a self-organizing map (SOM), positive matrix factorization (PMF), ion ratios, and Monte Carlo simulation. For the Sundarban part of Bangladesh, the SOM clustering approach yielded six clusters, while it yielded five for the Indian Sundarbans. The SOM results showed high correlations among Ca2+, Mg2+, and K+, indicating a common origin. In the Bangladesh Sundarbans, mixed water predominated in all clusters except for cluster 3, whereas in the Indian Sundarbans, Cl--Na+ and mixed water dominated in clusters 1 and 2, and both water types dominated the remaining clusters. Coupling of SOM, PMF, and ionic ratios identified rock weathering as a driving factor for groundwater chemistry. Clusters 1 and 3 were found to be influenced by mineral dissolution and geogenic inputs (overall contribution of 47.7%), while agricultural and industrial effluents dominated clusters 4 and 5 (contribution of 52.7%) in the Bangladesh Sundarbans. Industrial effluents and agricultural activities were associated with clusters 3, 4, and 5 (contributions of 29.5% and 25.4%, respectively) and geogenic sources (contributions of 23 and 22.1% in clusters 1 and 2) in Indian Sundarbans. The probabilistic health risk assessment showed that NO3- poses a higher PN-CHR risk to human health than F- and As, and that potential risk to children is more evident in the Bangladesh Sundarban area than in the Indian Sundarbans. Local authorities must take urgent action to control NO3- emissions in the Indo-Bangla Sundarbans region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Monitoramento Ambiental/métodos , Aprendizado de Máquina não Supervisionado , Agricultura , Água , Poluentes Químicos da Água/análise , Qualidade da Água
8.
Sci Rep ; 14(1): 1265, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218993

RESUMO

Determining the degree of high groundwater arsenic (As) and fluoride (F-) risk is crucial for successful groundwater management and protection of public health, as elevated contamination in groundwater poses a risk to the environment and human health. It is a fact that several non-point sources of pollutants contaminate the groundwater of the multi-aquifers of the Ganges delta. This study used logistic regression (LR), random forest (RF) and artificial neural network (ANN) machine learning algorithm to evaluate groundwater vulnerability in the Holocene multi-layered aquifers of Ganges delta, which is part of the Indo-Bangladesh region. Fifteen hydro-chemical data were used for modelling purposes and sophisticated statistical tests were carried out to check the dataset regarding their dependent relationships. ANN performed best with an AUC of 0.902 in the validation dataset and prepared a groundwater vulnerability map accordingly. The spatial distribution of the vulnerability map indicates that eastern and some isolated south-eastern and central middle portions are very vulnerable in terms of As and F- concentration. The overall prediction demonstrates that 29% of the areal coverage of the Ganges delta is very vulnerable to As and F- contents. Finally, this study discusses major contamination categories, rising security issues, and problems related to groundwater quality globally. Henceforth, groundwater quality monitoring must be significantly improved to successfully detect and reduce hazards to groundwater from past, present, and future contamination.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Subterrânea/química , Arsênio/análise , Fluoretos
9.
Heliyon ; 10(1): e23982, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38230245

RESUMO

An enormous amount of power is required in a rising nation like Bangladesh, where achieving economic growth without endangering the environment is a burning issue. The majority of people who live in coastal areas of Bangladesh do not have sufficient access to electricity. There are almost 40 million people living along Bangladesh's 724-km shoreline. Furthermore, it is remarkable that coastal regions have year-round winds, strong enough to generate enormous amounts of power. The viability and promise of wind energy in Bangladesh's southern regions are highlighted in this study. The places demonstrate the possibility for cheaper power production at 30 m-40 m altitudes. The rate of electricity does, however, rise with height. The main objective of this study is to analyze the prospect of wind energy in Sandwip and Kalapara coastal areas of Bangladesh. The data from 1990 to 2020 was taken from the database from the Bangladesh Meteorological Department (BMD) and NASA's NREL (National Renewable Energy Laboratory). These data sources were used to determine the wind power density, wind power output, energy yield, and finally estimate the CO2 emission reduction. In this paper, a novel approach to the wind energy on selected coastal area is presented and realistic calculation of energy output is carried out of the planned wind system. Finally calculated the realistic CO2 emission reduction by using this approach for a sustainable future. Estimation reveals that about 162.43 GWh of electricity can be generated annually by installing 684 wind towers on southern Kalapara (Khepupara) area and about 257.25 GWh of electricity can be generated annually by installing 1024 wind tower on the periphery of Sandwip area. So, if 1,768 wind turbines are installed on the Sandwip and Kalapara coastal region instead of burning fossil fuels, about 1,11,373.29 tons of CO2 will be prevented from being emitted annually.

10.
J Contam Hydrol ; 260: 104271, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056088

RESUMO

Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.


Assuntos
Ecossistema , Poluentes Químicos da Água , Humanos , Plásticos , Microplásticos , Baías , Estuários , Biodiversidade , Polímeros , Água , Monitoramento Ambiental , Sedimentos Geológicos
11.
J Environ Manage ; 351: 119714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056328

RESUMO

Evapotranspiration (ETo) is a complex and non-linear hydrological process with a significant impact on efficient water resource planning and long-term management. The Penman-Monteith (PM) equation method, developed by the Food and Agriculture Organization of the United Nations (FAO), represents an advancement over earlier approaches for estimating ETo. Eto though reliable, faces limitations due to the requirement for climatological data not always available at specific locations. To address this, researchers have explored soft computing (SC) models as alternatives to conventional methods, known for their exceptional accuracy across disciplines. This critical review aims to enhance understanding of cutting-edge SC frameworks for ETo estimation, highlighting advancements in evolutionary models, hybrid and ensemble approaches, and optimization strategies. Recent applications of SC in various climatic zones in Bangladesh are evaluated, with the order of preference being ANFIS > Bi-LSTM > RT > DENFIS > SVR-PSOGWO > PSO-HFS due to their consistently high accuracy (RMSE and R2). This review introduces a benchmark for incorporating evolutionary computation algorithms (EC) into ETo modeling. Each subsection addresses the strengths and weaknesses of known SC models, offering valuable insights. The review serves as a valuable resource for experienced water resource engineers and hydrologists, both domestically and internationally, providing comprehensive SC modeling studies for ETo forecasting. Furthermore, it provides an improved water resources monitoring and management plans.


Assuntos
Algoritmos , Bangladesh , Hidrologia , Agricultura
12.
Environ Sci Pollut Res Int ; 31(2): 2343-2359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057678

RESUMO

Toxic metals and freshwater fish's metalloid contamination are significant environmental concerns for overall public health. However, the bioaccumulation and sources of metal(loids) in freshwater fishes from Bangladesh still remain unknown. Thus, the As, Pb, Cd, and Cr concentrations in various freshwater fish species from the Rupsha River basin were measured, including Tenualosa ilisha, Gudusia chapra, Otolithoides pama, Setipinna phasa, Mystus vittatus, Glossogobius giuris, and Pseudeutropius atherinoides. An atomic absorption spectrophotometer was used to determine metal concentrations. The mean concentrations of metal(loids) in the fish muscle (mg/kg) were found to be As (1.53) > Pb (1.25) > Cr (0.51) > Cd (0.39) in summer and As (1.72) > Pb (1.51) > Cr (0.65) > Cd (0.49) in winter. The analyzed fish species had considerably different metal(loid) concentrations with seasonal variation, and the distribution of the metals (loids) was consistent with the normal distribution. The demersal species, M. vittatus, displayed the highest bio-accumulative value over the summer. However, in both seasons, none of the species were bio-accumulative. According to multivariate statistical findings, the research area's potential sources of metal(loid) were anthropogenic activities linked to geogenic processes. Estimated daily intake, target hazard quotient (THQ), and carcinogenic risk (CR) were used to assess the influence of the risk on human health. The consumers' THQs values were < 1, indicating that there were no non-carcinogenic concerns for local consumers. Both categories of customers had CRs that fell below the permissible range of 1E - 6 to 1E - 4, meaning they were not at any increased risk of developing cancer. The children's group was more vulnerable to both carcinogenic and non-carcinogenic hazards. Therefore, the entry of metal(loids) must be regulated, and appropriate laws must be used by policymakers.


Assuntos
Peixes-Gato , Metais Pesados , Poluentes Químicos da Água , Animais , Criança , Humanos , Metais Pesados/análise , Rios , Cádmio , Bioacumulação , Saúde Pública , Bangladesh , Chumbo , Peixes , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Medição de Risco
13.
Risk Anal ; 44(2): 439-458, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37357220

RESUMO

Floods occur frequently in Romania and throughout the world and are one of the most devastating natural disasters that impact people's lives. Therefore, in order to reduce the potential damages, an accurate identification of surfaces susceptible to flood phenomena is mandatory. In this regard, the quantitative calculation of flood susceptibility has become a very popular practice in the scientific research. With the development of modern computerized methods such as geographic information system and machine learning models, and as a result of the possibility of combining them, the determination of areas susceptible to floods has become increasingly accurate, and the algorithms used are increasingly varied. Some of the most used and highly accurate machine learning algorithms are the decision tree models. Therefore, in the present study focusing on flood susceptibility zonation mapping in the Trotus River basin, the following algorithms were applied: forest by penalizing attribute-weights of evidence (forest-PA-WOE), best first decision tree-WOE, alternating decision tree-WOE, and logistic regression-WOE. The best performant, characterized by a maximum accuracy of 0.981, proved to be forest-PA-WOE, whereas in terms of flood exposure, an area of over 16.22% of the Trotus basin is exposed to high and very high floods susceptibility. The performances applied models in the present work are higher than the models applied in the previous studies in the same study area. Moreover, it should be noted that the accuracy of the models is similar with the accuracies of the decision tree models achieved in the studies focused on other areas across the world. Therefore, we can state that the models applied in the present research can be successfully used in by the researchers in other case studies. The findings of this research may substantially map the flood risk areas and further aid watershed managers in limiting and remediating flood damage in the data-scarce regions. Moreover, the results of this study can be a very useful for the hazard management and planning authorities.

14.
Environ Pollut ; 343: 123236, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160776

RESUMO

The increasing use of cellulose-based materials (CBMs) has provided beneficial applications in different sectors. However, its release into environments may represent an ecological risk, therefore demanding that ecotoxicological studies be conducted to understand the risks (current and future) of CBM pollution. Thus, we evaluated the possible effects of microcrystalline cellulose (CMs) in Physalaemus cuvieri tadpoles. After seven days of exposure to CMs (at 58.29 and 100 mg/L), the animals were subjected to behavioral evaluation, and different biomarkers (biometric and biochemical) were evaluated. Although our data do not point to a neurotoxic effect of CMs (inferred by the absence of behavioral changes and changes in AChE and BChE activity), animals exposed to CMs showed differences in body condition. Furthermore, we noticed an increase in the frequency of erythrocyte nuclear abnormalities and DNA damage, which were correlated with the ingestion of CMs. We noticed that the antioxidant activity of tadpoles exposed to CMs (inferred by SOD, CAT, and DPPH radical scavenging activity) was insufficient to control the increase in ROS and MDA production. Furthermore, exposure to CMs induced a predominant Th2-specific immune response, marked by suppressed IFN-γ and increased IL-10 levels, with a consequent reduction in NO levels. Principal component analysis and IBRv-2 indicate, in general, a primarily more toxic response to animals exposed to the highest CM concentration. Therefore, our study evidence that CMs affect the health of P. cuvieri tadpoles and sheds light on the threat these materials pose to amphibians.


Assuntos
Anuros , Poluentes Químicos da Água , Animais , Larva , Anuros/fisiologia , Antioxidantes/farmacologia , Poluentes Químicos da Água/toxicidade
15.
J Contam Hydrol ; 260: 104284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101231

RESUMO

Microplastic (MP) pollution has evolved into a significant worldwide environmental concern due to its widespread sources, enduring presence, and adverse effects on lentic ecosystems and human well-being. The growing awareness of the hidden threat posed by MPs in lentic ecosystems has emphasized the need for more in-depth research. Unlike marine environments, there remain unanswered questions about MP hotspots, ecotoxic effects, transport mechanisms, and fragmentation in lentic ecosystems. The introduction of MPs represents a novel threat to long-term environmental health, posing unresolved challenges for sustainable management. While MP pollution in lentic ecosystems has garnered global attention due to its ecotoxicity, our understanding of MP hotspots in lakes from an Asian perspective remains limited. Hence, the aim of this review is to provide a comprehensive analysis of MP hotspots, morphological attributes, ecotoxic impacts, sustainable solutions, and future challenges across Asia. The review summarizes the methods employed in previous studies and the techniques for sampling and analyzing microplastics in lake water and sediment. Notably, most studies concerning lake microplastics tend to follow the order of China > India > Pakistan > Nepal > Turkey > Bangladesh. Additionally, this review critically addresses the analysis of microplastics in lake water and sediment, shedding light on the prevalent net-based sampling methods. Ultimately, this study emphasizes the existing research gaps and suggests new research directions, taking into account recent advancements in the study of microplastics in lentic environments. In conclusion, the review advocates for sustainable interventions to mitigate MP pollution in the future, highlighting the presence of MPs in Asian lakes, water, and sediment, and their potential ecotoxicological repercussions on both the environment and human health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Lagos , Água , Monitoramento Ambiental/métodos
18.
Heliyon ; 9(11): e22692, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074858

RESUMO

In the modern world, plastic trash has been recognized as a global issue, and studies on microplastics (MPs) in the marine and inland environments have previously been conducted. Marine ecosystems act as a bio-diverse ecosystem where coral reefs contribute to make a sound living of the coastal people by gathering natural resources. The current study indicates that MPs and heavy metals (HMs) accumulation to biofilm and organic matter through sedimentation, precipitation, adsorption, and desorption that may have potential effect on growth and development of coral reefs in the marine ecosystems. However, the knowledge of distribution, impact, mechanism, degradation, and association mechanisms between MPs and HMs in the natural environment may open a new window for conducting analytical research from an ecological viewpoint. The current study thus summarizes the types of marine samples with the analytical techniques, polymers of MPs, and their impact on corals and other marine biota. This study also identifies existing knowledge gaps and recommends fresh lines of inquiry in light of recent developments in MPs and HMs research on the marine ecosystems. Overall, the present study suggests a sustainable intervention for reducing MPs and HMs from the marine ecosystems by demonstrating their existence in water, sediment, fish, corals, and other biota, and their impending ecotoxicological impacts on the environment and human health. The impacts of MPs and HMs on coral reefs are critically assessed in this study in light of the most recent scientific knowledge, existing laws, and new suggestions to minimize their contamination in the marine ecosystems.

19.
Heliyon ; 9(12): e22341, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076159

RESUMO

The significant increase in energy consumption has facilitated a rapid increase in offensive greenhouse gas (GHG) and CO2 emissions. The consequences of such emissions are one of the most pivotal concerns of environmental scientists. To protect the environment, they are conducting the necessary research to protect the environment from the greenhouse effect. Among the different sources of CO2 emission, power plants contribute the largest amount of CO2 and as the number of power plants around the world is rising gradually due to increasing energy demand, the amount of CO2 emission is also rising subsequently. Researchers have developed different potential technologies to capture post-combustion CO2 capture from powerplants among which membrane-based, cryogenic, absorption and adsorption-based CO2 processes have gained much attention due to their applicability at the industrial level. In this work, adsorption-based CO2 technologies are comprehensively reviewed and discussed to understand the recent advancements in different adsorption technologies and several adsorbent materials. Researchers and scientists have developed and advanced different adsorption technologies including vacuum swing adsorption, temperature swing adsorption, pressure swing adsorption, and electric swing adsorption, etc. To further improve the CO2 adsorption capacity with a compact CO2 adsorption unit, researchers have integrated different adsorption technologies to investigate their performance, such as temperature vacuum swing adsorption, pressure vacuum swing adsorption, electric temperature pressure swing adsorption, etc. Different adsorbent materials have been tested to evaluate their applicability for CO2 adsorption and among these adsorbents, advanced carbonaceous, non-carbonaceous, polymeric, and nanomaterials have achieved much attention due to their suitable characteristics that are required for adsorbing CO2. Researchers have reported that higher CO2 adsorption capacity can be achieved by integrating different adsorption technologies and employing suitable adsorbent material for that system. This comprehensive review also provides future directions that may assist researchers in developing novel adsorbent materials and gaining a proper understanding of the selection criteria for effective CO2 adsorption processes with suitable adsorbents.

20.
PLoS One ; 18(12): e0290234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134202

RESUMO

Although many studies have focused on chromium removal from aqueous media by ternary Nano adsorbents, still the integrated kinetics, equilibrium, and thermodynamic mechanisms of chromium removal remain unknown. Thus in this study, we have synthesized a novel ternary oxide nanocomposite comprising iron, manganese, and stannous (Fe2O3-MnO2-SnO2) in a facile method as a promising adsorbent for the removal of Cr(VI) from an aqueous medium. The Fe2O3-MnO2-SnO2 system was firstly characterized by FTIR, XRD, TGA, BET, and SEM/EDX. The effect of parameters, for instance, pH, temperature, initial Cr(VI) intensity, and adsorbent dose, have been examined to optimize the Cr(VI) adsorption performance. The adsorption of Cr(VI) onto Fe2O3-MnO2-SnO2 nanoadsorbent is associated with an adsorption/reduction mechanism. Using an initial Cr(VI) intensity of 50 mg L-1, 200 rpm agitation, 2.5-g L-1 of adsorbent, pH 2, 90 minutes adsorption time, and 298 K temperature, a maximum adsorption capability of 69.2 mg Cr(VI) g-1 for Fe2O3-MnO2-SnO2 was obtained. Models of pseudo-2nd-order kinetics and Langmuir's isotherm were best suited to the investigated data. Besides, thermodynamic parameters show that Cr(VI) adsorption onto Fe2O3-MnO2-SnO2 was random and dominated by entropy. The reusability of Fe2O3-MnO2-SnO2 was found to be consistently high (remaining above 80% for Cr(VI)) over four adsorption-desorption cycles. Chromium adsorption from the tannery wastewater was achieved 91.89% on Fe2O3-MnO2-SnO2. Therefore, Fe2O3-MnO2-SnO2 nanoparticles, being easy to be synthesized, reusable and having improved adsorption capability with higher surface area, could be a desirable option for removing Cr(VI) from aqueous environments.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Óxidos , Compostos Férricos , Compostos de Manganês , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Termodinâmica , Água , Cromo/química , Adsorção , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...